Plants for Bees

SOUTH AFRICA

Trees
- Acacia spp.
- Cat Thorn
- Karee
- Guarri
- Poison Star Apple
- Acacia spp. Chook Thorn
- Buffalo Thorn
- Keurboom blossom tree
- Macadamia Nut
- Litchi
- Lavender
- SunFlower
- Strawberry
- Fennel
- Rocket
- Coriander
- Citrus

Herbs & Crops
- Burchellia bubalina
- Prunus Spp.
- Malus sylvestris
- Halleria lucida
- A. Melifera
- Scutia myrtina
- Euclea racemosa, undulata
- Diospyros dichrophylla
- Virgilia divaricata

SHRUBS & SUCULENTS
- Melaleuca alternifolia
- Burchellia bubalina
- Prunus Spp.
- Malus sylvestris
- Halleria lucida
- A. Melifera
- Scutia myrtina
- Euclea racemosa, undulata
- Diospyros dichrophylla
- Virgilia divaricata

Creepers
- Passiflora

Ground Covers
- Anchusa capensis
- Papaveroideae
- Lobularia maritima
- Asclepias Spp.
- Felicia amelloides
- Euryops virgineus
- Erica Spp.

Unsuckled Color
- Violet
- Blue
- White
- Yellow

Bees prefer violet, blue, white and yellow flowers.

Bees Can Sense the Electric Fields of Flowers and Affect Them So That Other Bees Know When It's Recently Harvested

In addition, foraging bees can use the electric field of the flower to help find the best flowers. The bees then communicate this information to other bees, allowing them to make more efficient use of their energy. The electric fields of flowers can also be affected by the presence of other bees, which can alter the electric field and make it more difficult for bees to find the flowers. This can lead to a feedback loop, where more bees are attracted to the flowers because they are electrically charged, and the flowers become even more electrically charged, attracting even more bees. This can lead to a cycle where the electric fields of flowers and the bees that forage them interact in a complex way, affecting the structure and function of flower fields and the behavior of bees in foraging. This is an important area of research for understanding the behavior of bees and the structure of flower fields.